Exercise 9

Let $z=r e^{i \theta}$ be a nonzero complex number and n a negative integer $(n=-1,-2, \ldots)$. Then define $z^{1 / n}$ by means of the equation $z^{1 / n}=\left(z^{-1}\right)^{1 / m}$ where $m=-n$. By showing that the m values of $\left(z^{1 / m}\right)^{-1}$ and $\left(z^{-1}\right)^{1 / m}$ are the same, verify that $z^{1 / n}=\left(z^{1 / m}\right)^{-1}$. (Compare with Exercise 7, Sec. 9.)

Solution

Evaluate $\left(z^{1 / m}\right)^{-1}$ and $\left(z^{-1}\right)^{1 / m}$ separately, assuming that $z=r e^{i \theta}$. Let Θ be the principal argument $(-\pi<\Theta \leq \pi)$ of z, and let $k=0,1, \ldots, m-1$.

$$
\begin{aligned}
\left(z^{1 / m}\right)^{-1}=\left[\left(r e^{i \theta}\right)^{1 / m}\right]^{-1}=\left[\left(r e^{i(\Theta+2 \pi k)}\right)^{1 / m}\right]^{-1} & =\left[r^{1 / m} \exp \left(i \frac{\Theta+2 \pi k}{m}\right)\right]^{-1} \\
& =r^{-1 / m} \exp \left(-i \frac{\Theta+2 \pi k}{m}\right)
\end{aligned}
$$

Use the formula for z^{-1} in Exercise 7 of Sec. 9.

$$
\left(z^{-1}\right)^{1 / m}=\left[\left(\frac{1}{r}\right) e^{i(-\theta)}\right]^{1 / m}=\left[r^{-1} e^{i(-\Theta+2 \pi k)}\right]^{1 / m}=r^{-1 / m} \exp \left(-i \frac{\Theta-2 \pi k}{m}\right)
$$

Whether $2 \pi k$ is added to Θ or subtracted from Θ, the value of the exponential is the same. Consequently, $\left(z^{1 / m}\right)^{-1}=\left(z^{-1}\right)^{1 / m}$.

